

CCC Annual Report UIUC, August 14, 2013

Numerical Simulation of the Hagemann Entrainment Experiments

Kenneth Swartz (BSME Student) Lance C. Hibbeler (Ph.D. Student)

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Background

- Slag entrainment is a major obstacle for making clean steel
- Entrainment can occur via at least 9 different mechanisms
 - Meniscus level fluctuations
 - Meniscus freezing / hooks
 - Argon bubble interactions
 - Slag crawling down the SEN
 - von Kármán vortex formation
 - Surface stationary wave instability
 - Shear-layer instability
 - Upward flow impingement upon meniscus
 - Meniscus balding
- See Hibbeler and Thomas, AISTech 2013 for review

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Kenneth Swartz

5

Hagemann Experiments Oil Entrainment Experiments

- · Increase wheel speed at controlled acceleration until entrainment
- Record critical wheel angular velocity

MODEL INVESTIGATIONS ON SLAG ENTRAINMENT IN CONTINUOUS CASTING P.R. SCHELLER*, R. HAGEMANN* Archives of Metallurgy and Materials, Vol. 57 (2012), No. 1, p 283-289.

 2012 paper
 2013 paper

 Discrepancy with roller size
 • Kenneth Swartz
 • 10

Validation with Oil Entrainment Experiments Oil Entrainment Data

Hagemann *et al.* marked the boundary of stable and unstable interfaces by plotting capillary number at oil entrainment against the ratio of kinematic viscosities

0.006 $b_{(n)}^{(n)}$ • Critical Capillar-number (Ca') $\eta_{(1)}^{(n)}$ Ca'(v_1/v_2) = 3.10 ⁻⁶ v_1/v_2 + 2.8.10 ⁻³ $B_{(1)}^{(n)}$ = $B_{(2)}^{(n)}$	Data Point	Ratio of Kinematic Viscosities ()	Capillary Number ()	Critical Roller Angular Velocity (rad/s)
Unstable Interface, C.0.004 - Entrainment	1	0.82	0.002859	55.4
	2	5.10	0.002805	54.0
C Stable Interface	3	10.18	0.002702	51.4
No Entrainment	4	34.70	0.002962	59.9
	5	49.87	0.003067	62.6
Ratio of kinematic viscosities - v_1/v_2	6	99.49	0.003199	68.1
Figure 7 in Hagemann 2013	7	201.98	0.003358	76.6
5 5 5	8	503.14	0.004457	107.3
$u_2(\omega) = 1.75 \cdot 10^{-3} [\mathrm{m}]\omega + 3.01 \cdot 10^{-3}$	$^{-2}[ms^{-1}]$	$[1] \qquad \frac{u_2\eta_2}{\sigma} =$	= Ca	[8]

- Equations 1 & 8 from the paper were used to convert capillary number to roller angular velocity
- We will further validate the numerical model with these data points
 University of Illinois at Urbana-Champaign
 Metals Processing Simulation Lab
 Kenneth Swartz
 11

0.0

0.0

0.02

ŝ 0.0 Height

Red = Water

Blue= Air

t = 100.00 s

0.04 0.05 0.0 Radial Position (m)

0.08

0.04

0.02

0

Height (m) 0.06 t = 40.00 s

0.08

0.04 0.06 Radial Position (m)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Kenneth Swartz • 16

Validation with Oil Entrainment Experiments Finer Mesh: Entrainment Simulation

			Contours of V Fraction Red = Wa Blue= O Gravity	/olume ter il
 Simulation has run for 407.9 s Current ω = 28.3 rad/s Still running simulation 		Max y+ ~ 2	2.5	
			Roller speed (rac	<u>d/s)</u>
Volume (m ³)	Water	Oil (Ak 10)	$\omega = 0$	<i>t</i> < 1
Initial	0.01274075	0.002002671	$\omega = 18$	$1 \le t < 201$
Current	0.01274075	0.002002669	$\omega = 18 + 0.05 (t - 201)$	$t \ge 201$
University of Illinois at Urba	na-Champaign •	Metals Processing Simulation Lab	Kenneth Swartz	• 19

inuous asting Consortium

Conclusions

- Transient multiphase (VOF) numerical model of entrainment of has been developed
- Model has been validated with several different test problems, including entrainment experiments by Hagemann
- Discrepancies with reporting of data and experimental set-up make validation effort difficult
- 2D model neglecting surface tension comes close to a Hagemann experiment
- 3D may with surface tension will be needed to accurately simulate entrainment

Supports Slides 5 - 9uous asting nsortium

Rotating Cylinder Test Problem Analytical Solution

Assume steady, axisymmetric, 2D, no body forces Velocity Profile **Pressure Gradient** Shear Stress $v_{\rm w} = 0$ p = p(r) $\tau_{r\theta} = \tau_{\theta r} = -2\mu \frac{C_2}{r^2}$ $v_{\theta} = C_1 r + \frac{C_2}{C_1} r$ $\frac{dp}{dr} = \rho \frac{v_{\theta}^2}{r}$ Other $\tau_{ii}=0$ $v_z = 0$ $C_1 = \frac{\frac{\omega_i}{r_o^2}}{1}$ $\frac{\omega_{o}}{2}$ $C_2 = -\frac{\omega_i - \omega_o}{1 \quad 1}$ $r_{2}^{2} - r_{1}^{2}$ $\overline{r_o^2}$ $V_i = \omega_i r_i$ $\operatorname{Re} = \frac{997 \frac{kg}{m^3} \times 0.002 \frac{m}{s} \times 0.02m}{0.0009 Pa \cdot s} = 44$ $\operatorname{Re} = \frac{\rho V_i L}{\mu}$ $L = r_o - r_i$ University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Kenneth Swartz 27

Rotating Cylinder Test Problem Mesh & Modeling Details

Pressure gradient effects and curvature correction enabled

30

Supports Slide 9

nuous asting Consortium

Validation with Single-Phase Experiments Mesh Refinement Study

In order to test the effect of the mesh we tested 4 meshes of varying cell size 1000 Number Approx. Cell Size Max v^+ 29,660 cells 64,000 cells 2 mm from Roller of Cells 98,356 cells 800 163,976 cells Hagemann 0.26 mm 29,660 6.00 X Velocity (mm/s) 600 64,000 0.21 mm 4.25 $\omega = 56.4 \text{ rad/s}$ 98,356* 0.12 mm 3.25 400 163,976** 0.07 mm 2.75 *Every other data point shown 200 **Every third data point shown Data 0 10 Distance from Roller (mm) Results are mesh independent! Kenneth Swartz 35 University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Supports Slides Validation with Single-Phase Experiments 5 - 10 20 mm Roller Domain and Boundary Conditions uous asting Consortium No-slip stationary Hagemann data point No-slip stationary walls $v_x=0, v_y=0$ wall $v_x=0$, $v_y=0$ Results extracted along this line. 20 mm

20 mm Roller: No-slip moving wall 80 mm $v_{\theta} = R \omega$ 50 mm Water \mathbf{V} 85 mm 200 mm No-slip stationary wall $v_x=0, v_y=0$ Drawn to scale Hypothesis: Hagemann used a smaller roller University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Kenneth Swartz 36

Validation with Single-Phase Experiments Roller Diameter Comparison

Using the same modeling approach, we were able to better match the data points with a roller diameter of 20 mm (instead of 40 mm as stated by Hagemann).

Trend Lines

Hagemann
$$u_2(\omega) = 1.75[mm]\omega + 30.1\left[\frac{mm}{s}\right]$$

40 mm Diameter

$$u_2(\omega) = 4.78[mm]\omega + 2.50\left\lfloor \frac{mm}{s} \right\rfloor$$

R²=0.9995

$$\frac{20 \text{ mm Diameter}}{u_2(\omega) = 1.82[mm]\omega + 6.34\left[\frac{mm}{s}\right]}$$

$$R^2 = 0.9971$$

Supports Slides 5 - 10tinuous Casting Consortium

Validation with Single-Phase Experiments **Roller Diameter Comparison**

Roller Angular Velocity ω (rad/sec)	Hagemann u ₂ (mm/s)	40 mm Diameter u ₂ (mm/s)	40 mm Diameter Error	20 mm Diameter u ₂ (mm/s)	20 mm Diameter Error
15.3	40.1	79.2	97.6 %	39.9	0.4 %
24.7	85.6	119.7	39.8 %	52.8	38.3 %
40.6	100.5	192.9	91.9 %	76.9	23.5 %
56.4	141.4	267.4	89.1 %	104.8	25.9 %
75.0	160.2	362.6	126.3 %	139.3	13.1 %
90.8	200.3	443.6	121.5 %	169.2	15.5 %
108.3	219.9	522.9	137.8 %	203.0	7.7 %
125.5	240.3	597.4	148.6 %	239.8	0.2 %
University of Illinois at Urbana-Champaign • Metals Processing Signulation Lab • Kenneth Swartz • 41					

University of Illinois at Urbana-Champaign

Supports Slides

- Metals Processing Simulation Lab
- Kenneth Swartz

- Each data set normalized with respect to tangential velocity at surface of roller
 - $v^* = \frac{v}{v}$
- Faster roller speeds lead to smaller boundary layers
- ωR
- This results in steeper velocity gradients near the roller Hagemann may have measured inside the boundary layer

Multiphase Test Problem Modeling Details

We first attempted to find the analytical solution of interface shape using a steady simulation. The following modeling details were used.

- 2-D, Axisymmetric swirl, incompressible, steady
- Gravity enabled in -z direction
- Multiphase Volume of Fluid model
 - Implicit VOF and Implicit Body Force
- Standard k-ε turbulence model with standard model constants
- Enhanced Wall Treatment
 - Pressure gradient effects enabled

Multiphase Test Problem Modeling Details

	Relaxation Factor	Discretization Method				
Gradient		Green-Gauss Node Based				
Pressure	0.3	PRESTO!				
Density	1					
Body Forces	1					
Momentum	0.7	Second Order Upwind				
Swirl Velocity	0.9	Second Order Upwind				
Volume Fraction	*0.1	**				
Turbulent KE	0.8	Second Order Upwind				
Turbulent Dissipation	0.8	Second Order Upwind				
Turbulent Viscosity	1					
 Pressure-Velocity Coupling: PISO Skewness Correction = 1 Neighbor Correction = 1 Skewness-Neighbor Coupling enabled 						
his was the starting value and was We were testing different volume f	s lowered later when spec raction discretization meth	ified. hods. Each method will be shown.				

*Т

Supports Slides 12 – 14 Stinuous Casting Consortium	<i>ه</i> ailed	ultiphase Test Steady S	Problem imula	tions
Analytical Solution Gravity ↓	Air			
Mesh: 5000 Cells	ater			
	Modifie	<u>d HRIC</u>	Com	oressive
Volume Fraction Relaxation Factor	0.1	0.001	0.1	0.001
Approx. Residual Convergence	1x10 ⁻²	1x10 ⁻²	1x10 ⁻²	1x10 ⁻²
Water Volume Change	-25.9%	+10.8%	+73.6%	+2.7%
Oil Volume Change University of Illinois at Urbana-Champaign	+25.9%	-10.8% Metals Processing Simulation La	-73.6%	-2.7% Kenneth Swartz · 45

Steady simulations failed to match the analytical solution or conserve mass. Transient simulations gave much better results.

- 2-D, Axisymmetric swirl, incompressible, transient
- Gravity enabled in -z direction
- Multiphase Volume of Fluid model
 - Explicit VOF and Explicit Body Force
 - Courant Number = 0.25
- Standard k-ε turbulence model with standard model constants
- Enhanced Wall Treatment
 - Pressure gradient effects enabled

Phase	Material	Density (kg/m³)	Viscosity (kg/m·s)	Surface Tension (N/m)		
1	Water	998.2	0.001003	0		
2	Air	1.225	1.789 x 10 ⁻⁵	0		
University of Illinois at Urba	ana-Champaign •	Metals Process	ing Simulation Lab	Kenneth Swartz	•	46

Supports Slides Multiphase Test Problem 12 - 14**Transient Test Problem Modeling Details** ting onsortium **Relaxation Factor** Discretization Method Gradient --Green-Gauss Node Based Pressure PRESTO! 1 Momentum Second Order Upwind 1 Swirl Velocity 1 Second Order Upwind Volume Fraction Explicit Geo-Reconstruct Turbulent KE 1 Second Order Upwind **Turbulent Dissipation** 1 Second Order Upwind **PISO Pressure-Velocity Coupling** -Neighbor Correction = 1 First Order Implicit Transient Formulation -Non-Iterative Time Advancement enabled **Time step** started at 5 x 10^{-5} seconds. It could be increased as high as 2 x 10^{-3} seconds. as the simulation went on and got closer to the steady-state solution. It was kept low enough that the Courant number stayed below 0.5 at all times. University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Kenneth Swartz 47 Supports Slides Multiphase Test Problem 12 - 14**OF** Discretization Method Study nsortium 4 VOF discretization methods were tested 4 mm Geo-Reconstruct gave the sharpest interface Selected for our multiphase simulations Air Height (mm) eight (Water 2 Radius (mm) 2 Radius (mm) Geo-Reconstruct Modified HRIC CICSAM Compressive Gravity Phase contours from 0.01 to 0.99 VOF are displayed. All cases were simulated under identical conditions besides the VOF discretization on a mesh with cell size ~0.4 mm (31250 cells). The

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Kenneth Swartz • 48

above results are from 2.00 seconds with swirl velocity patched into entire domain.

Supports Slides 15 – 20 Casting Consortium

Validation with Oil Entrainment Experiments Modeling Details

- 2-D, planar, incompressible, transient
- Gravity enabled in -y direction
- Multiphase Volume of Fluid model
 - Explicit VOF and Body Force
 - Courant number = 0.25
- Standard k
 turbulence model with standard model constants
 - Pressure gradient effects and curvature correction enabled

Applies to both Ak10 and Ak 50 oil simulations

